食塩水の複数回移動

食塩水をくみだしたり混合したりすることを、2度、3度と行う問題です。途中で「濃さ」を求める必要のないことがポイントとなります。

食塩水の複数回移動

例題1

濃さが8%の食塩水200gから食塩水50gをくみ出して、かわりに水100gを入れてよくかきまぜました。次に、食塩水50gをくみ出して、かわりに水100gを入れてよくかきまぜました。最後にできた食塩水の濃さは何%ですか。

解説

吹き出し用まなぶくんイラスト

面倒そうだな・・・・
8%の食塩水200g →8%の食塩水150g
  
8%の食塩水150gと水100gで → ?%の食塩水250g

?%は面積図なしでも求まりますね。
150×0.08=12
12gの食塩が解けている250gの食塩水の濃さは・・・

吹き出し用カンガルー先生イラスト

間違ってはいないけどさ、その濃さは求める必要がないでしょ。
途中経過の濃さなんて、いちいち求める必要はないのだから。

略図で整理してみよう。
まず、8%の食塩水200g から50gを捨てる。
当然残りは150gになる。


中学受験算数カンガループリント 食塩水の複数回移動  0030
吹き出し用カンガルー先生イラスト

この食塩水150gにとけている食塩が12gはどうやって求める?

吹き出し用まなぶくんイラスト

濃さははじめと同じ8%ですから、
150×0.08=12

吹き出し用カンガルー先生イラスト

正解。
もう1つ、別の求め方は?

吹き出し用まなぶくんイラスト

え?えっと・・・

吹き出し用カンガルー先生イラスト

200gあった食塩水のうち、150gが残った。

つまり、 \(\displaystyle \frac{150}{200}=\displaystyle \frac{3}{4}\) 残っているのだから、

とけている食塩も \(\displaystyle \frac{3}{4}\) となる。

16×\(\displaystyle \frac{3}{4}\) =12

こちらのやり方も絶対にマスターしないとダメだよ。

では続き。

水を100g入れてまぜて、50gすてる。


中学受験算数カンガループリント 食塩水の複数回移動  0040
吹き出し用カンガルー先生イラスト

とけている食塩の量「?」を求めてくださいな。

吹き出し用まなぶくんイラスト

1つ前の、
「全体が250gで食塩12gの食塩水」の濃さと同じですね。
50g捨てる前と後で、濃さは同じですからね。

\(\displaystyle \frac{12}{250}\)×100=4.8(%)

全体が200gで濃さが4.8(%)だから、とけている食塩の量は

200×4.8=9.6
9.6gです。

吹き出し用カンガルー先生イラスト

間違ってはいないけど、「濃さ」なんて出す必要ないってば。

250gのうち、200g残ったのだから、\(\displaystyle \frac{200}{250}\) 残った。

だから、とけている食塩も \(\displaystyle \frac{200}{250}\) 残る。

12× \(\displaystyle \frac{200}{250}\) =9.6

よって、9.6gの食塩がとけているのです。


中学受験算数カンガループリント 食塩水の複数回移動  0050
吹き出し用カンガルー先生イラスト

最後、ここに水を100gいれると・・・


中学受験算数カンガループリント 食塩水の複数回移動  0060
吹き出し用まなぶくんイラスト

300gに9.6gがとけている。

\(\displaystyle \frac{9.6}{300}\)×100=3.2(%)
 
濃さは3.2%だ!

吹き出し用カンガルー先生イラスト

正解です。
とにかくポイントは、途中の濃さを求める必要はないということ。
食塩水ととけている食塩の量がどのように変化していくのかをていねいに追いかけるんです。

吹き出し用まなぶくんイラスト

なるほど。
よくわかりました!

吹き出し用まなぶくんイラスト

ところで先生。

この分数のような表示、分数じゃないよって言われましたけど、

分数として見れば、「食塩水の濃さ」そのものを表していますよね。

\(\displaystyle \frac{食塩の量}{全体の量}\)

ですからね。

百分率になおすために100倍するかしないか、それだけの違いです。
最後の濃さを求めるときに気づきました。

吹き出し用カンガルー先生イラスト

あら、よく気がついたね。

あまり教えすぎて混乱させるのも嫌だから言わなかったんだけどね。

「途中の濃さを求める必要はない」と教えてきたけど、厳密に言い直せば、

「途中の濃さを百分率に直す必要はない」

ということなんだよね、実は。

→ 次のページ