文章題において、分数と出会うのは「速さ」と「割合」が主な単元です。これらは算数における大きな柱であり、「分数」の扱いに慣れておかないと、まったくついていけなくなってしまいます。5年生の初期までに、分数の計算に慣れておきましょう。できれば塾で本格的な算数がはじまる前の時期である4年生のうちに、分数の計算練習と、この「速さと分数」のページの練習を積んでおくことが望ましいです。ここで培ったアドバンテージは、圧倒的な差となって表れていくことでしょう。

1:速さと分数

目次

  1. 速さと分数

1:速さと分数

吹き出し用カンガルー先生イラスト

ではいよいよ、行きます。
     
算数において、「分数」が上手に使えることは、とても重要です。
分数を使わないで算数をやるなんて、まるで包丁を持たないで料理をするようなものです。

必ず分数を積極的に、上手に使っていかないといけません。

算数のありとあらゆる単元で分数を使いこなしていくのですが、ここでは、「速さ」における「分数」の利用を見ていきましょう。
     
分数の利用のエッセンスがすべて詰まっています。

    

保護者さまへ
       
「速さ」とは「時間」と「距離」が正比例することを扱う単元です。 
これは、もちろん「比」と直結する内容ですし、そもそも「比」と「分数」はまったく同じものの別表現にすぎません。いずれ、「速さと比」において全容を見ることとなります。
 

1:割算は即座に分数にする!

例題1

1kmを分速75mで進むのにかかる時間を求めなさい。

解説

吹き出し用まなぶくんイラスト

よく練習したので、問題を読んだ瞬間に解き方がわかります!

1000÷75

を計算すれば答えがでます!

吹き出し用カンガルー先生イラスト

うん、あってるよ。
では計算をしてごらん。

吹き出し用まなぶくんイラスト

えーと・・・(筆算する学くん)

1000÷75=13.33・・・

割り切れないです先生!

吹き出し用カンガルー先生イラスト

うんそうだね。      
1000÷75=13.333・・・・
と永久に割り切れないよ。

吹き出し用まなぶくんイラスト

え?では、どうすれば・・・?

吹き出し用カンガルー先生イラスト

分数を使うに決まっているじゃないですか。
基本中の基本だぞ。

1000÷75=\(\displaystyle \frac{1000}{75}\)

このようにわり算を見たら、何も考えずに分数にするのが常識です。

吹き出し用まなぶくんイラスト

あ・・・なるほど・・・
そうでしたね。

吹き出し用カンガルー先生イラスト

\(a÷b=\displaystyle \frac{a}{b}\)

これが分数の定義だよ。
わり算をしないで、数を上下に並べればOK!
これこそが分数の素晴らしさ。

で、

約分が必要なら約分する。
これがわり算に対する正しい態度です。
ものすごーく重要だから、必ず覚えてね。

吹き出し用まなぶくんイラスト

はい。

1000÷75=\(\displaystyle \frac{1000}{75}\)

じゃあ、約分をしますね。

\(\displaystyle \frac{1000}{75}=\displaystyle \frac{200}{15}=\displaystyle \frac{40}{3}=13\displaystyle \frac{1}{3}\)

吹き出し用カンガルー先生イラスト

で、何を求めたのだっけ?
単位は何?

吹き出し用まなぶくんイラスト

  
単位は分です。

\(13\displaystyle \frac{1}{3}\) 分ということは、13分20秒が答えだ!

吹き出し用カンガルー先生イラスト

正解です。

わり算は、必ずしも割り切れるとは限らないよね。
 
「わり算」ときたら「分数」にする。
必ず暗記すべき必須知識です。
割り切れないという心配もないし、何より「約分」はとても便利な計算だ。
けた数の多いわり算をやらなくて済むからね。 

もちろん分数を使わないで計算するときだってあるよね。
「余りをだすべき問題」のときだ。
   
例えば、「1000円を75人で分ける、1人いくらもらえるか」ならば、
1000÷75=13あまり25 
1人13円ずつもらって、25円あまる

あまりを出すべきか、分数にすべきか。
問題によって使い分けるです。

例題2

次の□に当てはまる値を求めなさい。
3375mを45秒かけて進む速さは秒速□m

解説

吹き出し用まなぶくんイラスト

 
3375÷45
を計算すればいい。これはすぐにわかります。

吹き出し用カンガルー先生イラスト

うん合格!
次は、この計算をいかに素早く正確に処理ができるか。その練習だよ。
わり算なんだから・・・

吹き出し用まなぶくんイラスト

 
はい、すぐに分数にします。

3375÷45=\(\displaystyle \frac{3375}{45}\)

あとは約分です。

\(\displaystyle \frac{3375}{45}=\displaystyle \frac{675}{9}=75\)
 
あ、割り切れた。

答えは75だ。
秒速75mです。

吹き出し用カンガルー先生イラスト

OK!大正解。
今回は、3375÷45=75 と割り切れた。

でも、計算してみるまで割り切れるのかどうかはわからなかった。

だから、いきなり筆算をするのは絶対にやめないといけない。
それに、3375÷45を筆算するのって・・・かなり面倒ですね。

「分数にして約分」こそが最強のやり方なのです。
必ずこの方法で学習を進めていくのです!

吹き出し用まなぶくんイラスト

 
はい。わかりました!

保護者さまへ
  
上の例題における約分

「3375 / 45 を約分せよ」

この約分の計算も、面倒でたいへんである、というレベルの生徒も多数見てきました。
3375÷5=675
を、暗算か、それに準ずるレベルの計算で処理できないのです。
えっちらおっちら筆算でようやく答えをだす、そんなレベルです。

結局算数の力の大半は、「思考力」などという曖昧なもの以前に、圧倒的に「計算力」で差がつきます。計算が遅すぎて、計算にエネルギーの大半をつぎこむせいで、算数を楽しく考えることができない子どもが圧倒的多数です。

4年生後半から少なくとも5年生の夏休み前頃をめどに、「約分」をサラサラとこなせるような計算練習を積んでおきましょう。

例題3

次の□に当てはまる値を求めなさい。

3kmを時速7.5kmで進むと、□分かかります。

※これは時間の分数利用のあとにもっていくか??

350mを分速52.5mで進と□分□秒かかります。

解説

吹き出し用まなぶくんイラスト

 
時速7.5kmを分速に直します。
7500÷60=125
分速125mです。

だから、
3000÷125=24
24分です!

吹き出し用カンガルー先生イラスト

正解です。
素晴らしいのだけれど、もっともっと計算上手になってほしいな。

3kmを時速7.5kmで進む

3÷7.5=\(\displaystyle \frac{3}{7.5}\)(時間)

かかる。
わり算はすぐに分数にする!

吹き出し用まなぶくんイラスト

 
\(\displaystyle \frac{3}{7.5}\)(時間)

分母が小数なんですけど・・・こんなのアリですか?

吹き出し用カンガルー先生イラスト

アリです。
何の問題もありませんから、慣れてくださいな。

分数は、分子と分母に同じ数をかければ、等しい値だから、
分子と分母を10倍すれば、

\(\displaystyle \frac{3}{7.5}=\displaystyle \frac{30}{75}\)

吹き出し用まなぶくんイラスト

 
\(\displaystyle \frac{30}{75}\)(時間)

なら見慣れた分数です。約分すれば、

\(\displaystyle \frac{30}{75}=\displaystyle \frac{2}{5}\)(時間)

24分ですね。
さっきと同じ答えが求まりました。

吹き出し用カンガルー先生イラスト

こっちの方が計算が楽だよね。

どんどん分数をつかっていこうね。

ちなみに、

\(\displaystyle \frac{3}{7.5}=\displaystyle \frac{6}{15}\)

とした方がさらに計算が楽だよね。

→ 次のページ